

UMR 8023 www.lpens.phys.ens.fr

> Jean-François ALLEMAND, PR ENS Jean-francois.allemand@phys.ens.psl.eu Vincent Croquette, DR CNRS, Directeur de l'ESPCI Vincent.Croquette@espci.psl.eu

Nucleic acid/Proteins interactions at the single molecule level.

Our team was a pioneer in single molecule micromanipulations. Our magnetic tweezers technique allowed us, and others, to exert forces and torques on single DNA molecules ^{1,2}. We could then get information on the elastic properties of DNA and on DNA/proteins interactions^{3,4}. In particular we could study molecular motors moving along DNA⁵⁻⁸ while modifying its structure. Helicases^{9–11}, molecular motors that unwind DNA and so transform the Watson-Crick double helix into two single-stranded DNA are a good example.

Recently ¹²we proposed a new detection scheme (see figure above) that allows measurements of DNA extension with a sub-nanometer resolution and with an acquisition rate around the kHz. The initial applications were dedicated to the study of kinetics and thermodynamics of unprecedented studied short DNA sequences(see second figure) ¹³.

Laboratoire de Physique de l'École normale supérieure 24 rue Lhomond 75005 Paris, France

The experimental internship/thesis project will be dedicated to the improvement/use of this new technique mostly with RNA that was much less studied than DNA at the single molecule level.

Depending on the candidate skills and interests the internship/thesis will be oriented towards instrumentation by moving to a faster camera or improving the stability/usability of the setup, and/or study of RNA helicases, like NSP13 the SARSCOV2 helicase, and its coupling with the polymerase and/or the effect of roadblocks along its trajectory, or EJC complex, a study for which our group was recently awarded an ANR grant in collaboration with the group of Hervé le Hir (IBENS, ENS).

The applicants are expected to have an interest in experimental physics, instrumentation, statistical physics, data analysis and basic knowledge in biology.

Funding : if a PhD is considered the applicant will have to apply to the EDPIF for funding. The team will also search for alternative funding.

- 1. Strick, T. R., Allemand, J. F., Bensimon, D., Bensimon, A. & Croquette, V. The elasticity of a single supercoiled DNA molecule. *Science* 271, 1835–1837 (1996).
- Allemand, J. F., Bensimon, D., Lavery, R. & Croquette, V. Stretched and overwound DNA forms a Paulinglike structure with exposed bases. *Proc. Natl. Acad. Sci. U. S. A.* 95, 14152–14157 (1998).
- Strick, T. R., Croquette, V. & Bensimon, D. Single-molecule analysis of DNA uncoiling by a type II topoisomerase. *Nature* 404, 901–904 (2000).
- 4. Koster, D. A., Croquette, V., Dekker, C., Shuman, S. & Dekker, N. H. Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB. *Nature* **434**, 671–674 (2005).
- 5. Bizard, A. H. *et al.* PICH and TOP3A cooperate to induce positive DNA supercoiling. *Nat. Struct. Mol. Biol.* **26**, 267–274 (2019).
- 6. Manosas, M., Perumal, S. K., Croquette, V. & Benkovic, S. J. Direct Observation of Stalled Fork Restart via Fork Regression in the T4 Replication System. *Science* **338**, 1217–1220 (2012).
- 7. Manosas, M. *et al.* Mechanism of strand displacement synthesis by DNA replicative polymerases. *Nucleic Acids Res.* **40**, 6174–6186 (2012).
- 8. Manosas, M., Xi, X. G., Bensimon, D. & Croquette, V. Active and passive mechanisms of helicases. *Nucleic Acids Res.* **38**, 5518–5526 (2010).
- 9. Bagchi, D. *et al.* Single molecule kinetics uncover roles for E. coli RecQ DNA helicase domains and interaction with SSB. *Nucleic Acids Res.* **46**, 8500–8515 (2018).

- 10. Hodeib, S. et al. A mechanistic study of helicases with magnetic traps. Protein Sci. 26, 1314–1336 (2017).
- 11.Lionnet, T., Spiering, M. M., Benkovic, S. J., Bensimon, D. & Croquette, V. Real-time observation of bacteriophage T4 gp41 helicase reveals an unwinding mechanism. *Proc. Natl. Acad. Sci. U. S. A.* 104, 19790–19795 (2007).
- 12. Rieu, M. et al. Parallel, linear, and subnanometric 3D tracking of microparticles with Stereo Darkfield Interferometry. Sci. Adv. 7, eabe3902 (2021).
- 13. Rieu, M., Valle-Orero, J., Ducos, B., Allemand, J.-F. & Croquette, V. Single-molecule kinetic locking allows fluorescence-free quantification of protein/nucleic-acid binding. *Commun. Biol.* 4, 1–9 (2021).